Productivity of Chlorella sorokiniana in a short light-path (SLP) panel photobioreactor under high irradiance.
نویسندگان
چکیده
Maximal productivity of a 14 mm light-path panel photobioreactor under high irradiance was determined. Under continuous illumination of 2,100 micromol photons m(-2) s(-1) with red light emitting diodes (LEDs) the effect of dilution rate on photobioreactor productivity was studied. The light intensity used in this work is similar to the maximal irradiance on a horizontal surface at latitudes lower than 37 degrees . Chlorella sorokiniana, a fast-growing green microalga, was used as a reference strain in this study. The dilution rate was varied from 0.06 to 0.26 h(-1). The maximal productivity was reached at a dilution rate of 0.24 h(-1), with a value of 7.7 g dw m(-2) h(-1) (m(2) of illuminated photobioreactor surface) and a volumetric productivity of 0.5 g dw L(-1) h(-1). At this dilution rate the biomass concentration inside the reactor was 2.1 g L(-1) and the photosynthetic efficiency was 1.0 g dw mol photons. This biomass yield on light energy is high but still lower than the theoretical maximal yield of 1.8 g mol photons(-1) which must be related to photosaturation and thermal dissipation of absorbed light energy.
منابع مشابه
Domestication of the green alga Chlorella sorokiniana: reduction of antenna size improves light-use efficiency in a photobioreactor
BACKGROUND The utilization of biomass from microalgae for biofuel production is one of the key elements for the development of a sustainable and secure energy supply. Among the different microalgae, Chlorella species are of interest because of their high productivity, high lipid content, and resistance to the high light conditions typical of photobioreactors. However, the economic feasibility o...
متن کاملLipid Productivity Of Chlorella pyrenoidosa In A Customized Lab Scale Photobioreactor Under Stress Conditions
Lab scale studies were conducted in a customized photobioreactor to assess the lipid productivity of Chlorella pyrenoidosa under fed-batch mode using 0.025g/l to 0.1 g/l urea and sodium nitrate as nitrogen source in nutrient medium. The light intensities used were 100 μmol ms and 135 μmol ms. The results indicated maximum lipid productivity of 0.103 g/d.l in BG11 medium with 0.1g/l sodium nitra...
متن کاملEngineering characterisation of a shaken, single-use photobioreactor for early stage microalgae cultivation using Chlorella sorokiniana.
This work describes the characterisation and culture performance of a novel, orbitally shaken, single-use photobioreactor (SUPBr) system for microalgae cultivation. The SUPBr mounted on an orbitally shaken platform was illuminated from below. Investigation of fluid hydrodynamics indicated a range of different flow regimes and the existence of 'in-phase' and 'out-of-phase' conditions. Quantifica...
متن کاملImproving Photobioreactor wall Using Optical Brightener: Investigating the Photostability of Coated Layer and Algal Growth
In this work, photostability, absorption and emission intensity of coated polycarbonate (PC) sheets with optical brightener (OB) as a wavelength converter material have been investigated. In addition, this coated sheet was used as a wall for microalgae culture flask, as a small scale photobioreactor, for studying the spectral conversion of UV-A radiation to blue light region and its effect ...
متن کاملPredictive modeling of biomass production by Chlorella vulgaris in a draft-tube airlift photobioreactor
The objective of this study was to investigate the growth rate of Chlorella vulgaris for CO2 biofixation and biomass production. Six mathematical growth models (Logistic, Gompertz, modified Gompertz, Baranyi, Morgan and Richards) were used to evaluate the biomass productivity in continuous processes and to predict the following parameters of cell growth: lag phase duration (λ), maximum specific...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biotechnology and bioengineering
دوره 104 2 شماره
صفحات -
تاریخ انتشار 2009